When the Trauma Patient Becomes the Stroke Patient-Craniocervical Blunt Trauma

Nancy Denke DNP, ACNP, FNP, FAEN Toxicology Consultants of Arizona

1

Objectives		
	Identify common mechanisms of injury as they relate to trauma to the craniocervical region	
	Understand the anatomy of cervical artery dissection	
-		
	Describe the signs & symptoms of cervical artery dissections	
4		
Enmittinite:	Formulate a treatment plan for best possible outcomes	
1		
	Discuss circumstances, controversies and therapies in the treatment dissections	

2

Overview of Cervical Artery Dissections

- Cervical artery dissections (CeAD) include both carotid artery dissections (CAD) and vertebral artery dissections (VAD)
- · Pathogenesis is not well understood
- Been associated with both major and minor trauma to the cervical region
- · Also, atraumatic conditions such as:
 - Genetic factors that alter the vascular structure
 - HTN
 - Migraine HA

3

Overview with Facial Trauma

Be aware of the prevalence of carotid artery injury found in asymptomatic blunt facial trauma patients

Can develop devastating ischemic stroke or even death

With improved screening criteria, studies have demonstrated increased detection of blunt carotid injury (BCI)

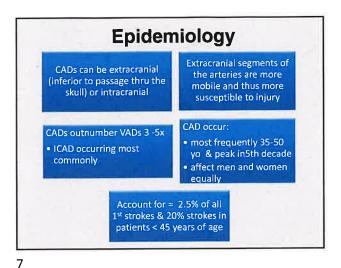
Lee, et. al (2014). Craniomaxillofacial Trauma Reconstruction. 7, 175-169

4

So Why Do CeADs Happen?

Patients who sustain CeAD with or without minor trauma likely have an underlying arteriopathy, inflammatory process, or structural instability of the arteries

Volker et.al (2011) showed biopsy-proven structural differences in the arterial walls of patients with spontaneous & trauma CeAD


+ association with underlying kinking and coiling of the ICA and dissection

Some think may be due to inflammation, genetics, infection, or other unknown causes

Epidemiology

- Blunt cerebrovascular injuries (BCVI) includes:
 - any form of non-penetrating injury to the ICA & vertebral arteries
- · Associated with high morbidity/mortality
- · Prompt diagnosis and treatment of BCVI
- Blunt carotid injury is observed in 1%- 2.6% of blunt trauma cases and in 2.7% of patients with severe multisystem trauma
 - Blunt carotid injury is associated with a high stroke rate (up to 60%) & mortality rate (19%-43%)

alytos O., Filis K., Sigula F. and Sianno A. (2016). Traumatic caretid artery dissection: A different entity

Biomechanics of the Cervical Spine

C-spine-7 vertebral bodies & divided into 4 anatomical sections:

- Atlas & Axis
- Root (C2-3 junction)-secures cervical column to the upper cervical spine.
- Column (C3-C7)

Movements include:

- · Flexion, extension, rotation, and lateral flexion
- · Dependent on the orientation of the joint facets
- · Further restricted by muscles & ligaments surrounding vertebrae

Atlanto-occipital junction- only movement allowed is nodding

Due to unique shape of joint articulations between C2-C7, any degree of rotation is always coupled with some lateral flexion and vice versa

8

Posterior Circulation

Comprised of:

- Paired vertebral arteries
- Basilar artery
- Paired posterior cerebral arteries
- Vertebrals join to form the basilar
- Basilar divides into 2 posterior cerebral

- Supply:
 - Cerebellum
 - Medulla
 - Pons
 - Midbrain
 - Midbiain
 - Thalamus
 - Medial temporal and occipital lobes

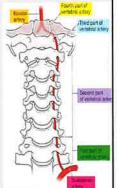
Anatomy of the Vertebral Artery

- · Brain receives blood supply from vertebral & ICAs
- Interconnects in cranial cavity & produces Circle of Willis
 - Union of vertebral & carotid systems provides collateral circulation
 - Equalizes BP in the brain's blood supply
- Vertebral artery supplies 20% blood to the brain
 - Supplies blood to the brainstem, spinal cord, and vertebrae and their associated ligaments and muscles
- · Remaining 80% supplied by the carotid system

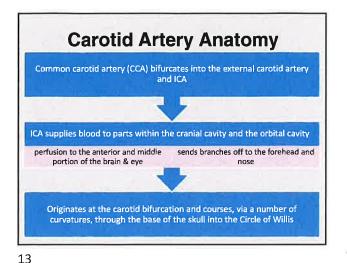
10

Vertebral Artery

V1 Segment


- Rises from the Subclavian artery to the transverse foramen of C6.
- Passes superiorly thru transverse foramina of upper C₆ in ≈ 88% cases
- Can enter as far superior as the transverse foramen of C₄₋₅

V3


C2 foramen to the dura

V

From the dura into the cranium

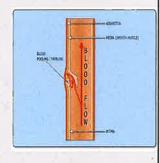
12

Pathophysiology of Dissections

- Arterial dissections occur when a tear develops in ≥
 1 layer of the vessel wall, allowing blood to enter the wall and split the layers
- Cervical arterial dissection occurs when the intimal wall of an artery is damaged as a result of trauma or defect
- Characterized by a cavity or intramural hematoma (IMH)
- Increased volume of the IMH may narrow or occlude the lumen, and it can also damage the intima and trigger thrombosis

Li Q., et, al. American Journal of Neuroradiology, 36, 1769 -75

14


Vertebral Dissections- Anatomy

- TVAI tends to occur where vessels are exposed to shearing forces, principally at junctions between fixed and mobile segments
- V2 segment is the most commonly affected in adult TVAL
 - V2 begins from the level of the 5th or 6th cervical vertebra to the 2nd cervical vertebra travelling through the transverse foramina at each vertebral level
 - V3 and V4 segments, artery has greater mobility & may be more resistant to blunt trauma
- Relate to high impact trauma with forced flexion/extension and lateral rotation involving the whole of the c-spine
- · Unilateral or bilateral, unilateral in 2/3 cases

deSouza R.M., Crocker M.J., Haliasos N., Rennie A. and Saxena A. (2010). European Spine Journal, 20, 1405–1416

Mechanism of Injury

- May result from a direct blow to anterolateral aspect of the neck
- An extreme extension and rotation of the neck
- TCADs result from Distraction/extension, distraction/flexion or lateral flexion forces of the cervical spine

16

15

A look at Dissections A look at Dissections Formal piles Formal piles Artery Dissection C Inches piles Artery Dissection C Inches piles Artery Dissection C Inches piles Dissection C Inches piles Dissection Dissecti

Overview with Facial Trauma

- Be aware of the prevalence of carotid artery injury found in asymptomatic blunt facial trauma patients
- Facial fracture- BCVI is a known sequela of high-energy CMF trauma (Kelts, et al., 2016)
 - Mandible & LeFort II & III fx- most common isolated CMF injury associated with BCVI
- With improved screening criteria, studies have demonstrated increased detection of blunt carotid injury (BCI)

Lee, et al (2014) Craniomaxiflofacial Trauma Reconstruction 7, 175–189

Blunt Injuries Associated with Vertebral & Carotid Injuries

- DAI with GCS ≤ 8
- Skull base fractures, occipital condyle fx or scalp degloving
- · Concurrent TBI & thoracic injury
- · Traumatic spinal injuries
 - Subluxations (below C₁- C₂) or fx involving transverse foramen & carotid canal
 - C₁-C₃ fractures- hangings or clothesline

19

20

stroke

-HTN

Post-partum

- Carotid artery stiffness

Other Risks

Hx of Migraine

Head position

- Strangulation
- · Dental procedure or washing hair
- · Ceiling painting
- Resuscitation

Sports

Wrestling

Leisure activities

Rollercoaster

Robertson & Koyfman A. (2017)

21

Neck Manipulation

Those Unhappy Genes

Similar to other risk factors associated with

- Hereditary connective tissue disease

- Vertebral bone structure changes

· About 2-10 % of all strokes can be

attributed to arterial dissection

- Albuquerque, et al (2011), reported on 13 patients undergoing chiropractic manipulation and then developing symptoms
- Dissections were noted along the vertebral artery, and ICA, as well as the basilar artery
 - Tx involved stenting and thrombolysis
 - 3 patients needed emergency cerebellar decompression
- 6/13 given meds to prevent clotting and stroke
- Others (7) had procedure
- · Follow-up revealed:
 - 9 had a complete recovery
 - 3 permanent neurological deficits

Altogle de athur com an Develope Hap Stroke sequelae of chropractic manipulation: Patterns of Injury and management, Journal of Neurosurgery, 215 (6), 197-2005

22

Migraine, Stroke, and Cervical Arterial Dissection

Shared Genetics for a Triad of Brain Disorders With Vascular Involvement

iyas Daghlas MD * Muralidharan Sargurupremraj PhD * Rebecca Danning, MS, Padivaig Gormicy, PhD Rainer Malis, PhD, Philippe Amouyet MD, PhD, Tima Metso, PhD, Alessandro Pezzini, MD, Tobias Kurth MD, ScO, Stephanie Debette, VD, PhD, Łand Daniel i Clissman, PhD:

Neurol Genet 2022 8 e653 doi:10.1212/NNG.000000000000000553

Correspondence for [halinering] intercents replayed balkschurg ship

- Migraine, stroke, and CeAD represent a triad of cerebrovascular disorders with comorbid relationships &vascular involvement
- Among all pairs of disorders, genome-wide genetic correlation was observed only between CeAD and migraine, particularly migraine without aura
- Local genetic correlations were more extensive between migraine & CeAD than those between migraine & stroke or CeAD & stroke
- Revealed evidence for novel CeAD associations

History of a Minor Precipitating Event

- Frequently elicited in patients with spontaneous dissection of the carotid or vertebral artery
- Precipitating events associated with hyperextension or rotation of the neck
- Chiropractic manipulation of the neck has been associated with carotid artery dissection &, particularly, vertebral artery dissection
- Hx of a respiratory tract infection

Prote Security 2021, 12: 602830 FMG05 PMG05 PMG0

kerten B. Værer ^a Sissesses German^{a a} Sissesses Finzer. ^a Chase Leve ^{as} Haver Cass seed. ^{as} Charter M. Ma and Russes Franc^a

- Recommend refraining from any kind of sports for 1 month
- Start with activities at low intensity and gradually increase the pace in an individually tailored
- Circumstances of the occurrences of the CeAD in the individual patient
- The meaning of sports activities for the individual well-being, the
- Presence or absence of comorbidities and of neurological sequela, neurovascular findings
- Signs of an underlying connective tissue alteration.

25

27

29

Neck Manipulation Associated With Stroke

- Albuquerque, et al (2011), reported on 13 patients undergoing chiropractic manipulation and then developing symptoms
- Dissections were noted along the vertebral artery, and ICA, as well as the basilar artery
 - Tx involved stenting and thrombolysis
 - 3 patients needed emergency cerebellar decompression
- 6/13 given meds to prevent clotting and stroke
- · Others (7) had procedure
- · Follow-up revealed:
 - 9 had a complete recovery
 - 3 permanent neurological deficits
 - 1 death from a cerebellar stroke.

Albuquerque F, et al. (2011). Cranlocervical arterial dissections as sequelae of chiropractic manipulation: Patterns of Injury and management. Journal of Neurosurgery, 115 (6), 197-2005.

26

Look, Listen, Ask and Think

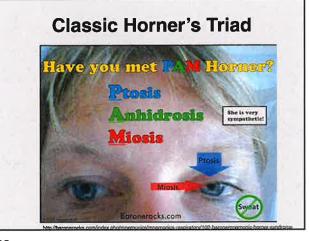
Clinical Pearl

Stop & THINK when you hear THIS phrase

"I have a pain in my neck and (or) head unlike anything I have ever had before"

- Take a step back
- Pay close attention to everything about this patient!

28


Making the Diagnosis

Look and Listen

- Five "D's"
 - Dizziness
 - Drop attacks (vertigo)
 - Diplopia
 - Dysarthria
 - Dysphagia
- And
 - Ataxia
- 3 "N's"
 - Nausea
 - Numbness
 - Nystagmus

Signs & Symptoms

- Traumatic vertebral artery injury (TVAI) & CAD present a clinical challenge
 - hard to detect
 - has a diverse presentation
 - no widely accepted guidelines of diagnosis and management
- Frequently asymptomatic with disastrous consequences of basilar territory infarction & death with vertebral dissection

33

31

Pain with Dissections Pain referral common to Vertebral Pain referral common to Internal Carotid

Signs and Symptoms

- BCVIs may be asymptomatic or masked by more significant coexisting traumatic injuries
- Many asymptomatic & remain undetected until symptoms of cerebrovascular ischemia present
- Symptoms of Carotid dissections occur after a mean of 12.5 hours in survivors, and after a mean of 19.5 hours in non-survivors
- Hörner syndrome- pressure from a hematoma, & paralysis of cranial nerve (above T2)

32

Carotid Dissection Symptoms

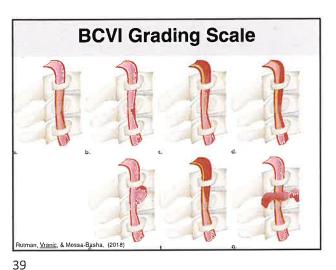
- HA (precedes ischemic event), with neck & facial painconstant, instantaneous, gradual, throbbing, or sharp
 - HA commonly ipsilateral to the dissected artery
 - HA usually precedes cerebral ischemic event
- Transient episodic blindness (painless monocular)
 - caused by decreased blood flow to the retina
- Ptosis with miosis, (partial Horner syndrome)
 - Can be painful
- Neck swelling
- · Pulsatile tinnitus- seen in up to 25% of patients
- · Decreased taste sensation (hypoageusia)
- · Focal weakness

Symptoms	Location of thesection		
	Carolid	Vertebral	
Pain distribution	Headache or migrame, 36%, 68%, 6 65%	Headache or migraine Neck pain posteriorily Chest pain*	
Vinitelegack defeats, by occlusion	Hampaness and densory loss Manacular blandness Hemmeglisct	Locked in syndrome Respiratory failure Hemianoppaa or bilateral visual field loss	
Veurologiscă deficits, by emboli	Anterior suddetion defects - Amaurous bugar (monocular blashness) 17% - - Hemonophet - Hemosphet - Anhana - Dysauthon - Hemospheson (occ. 7% of - Hemospheson (occ. 7% of	Prahme condition defects - Herningospi unbideral held defect - Alasta, 20% unbideral held defect - Discopia - Dysafrha - Upside-down volon - Lidnal mediatory conditions (Walending Syndome), 32% degelings, hermocrosi- discopia General mediatory designal hermocrosi- discopia General mediatory designal production of the condition of the cond	
Neurological deficids by compressive aneurys- mal distaltion and dicruption of adventitia	Homer syndrome, unitaleral models, places, and possess, 0.5%* Pulsable fundus: 15%* Ocular motor palsy CN III, IV, VI, 2.6%** Palsy of CN VI, III, XV, II	Putsatile bnnilus, 5% Unitateral radicular weakness (C5-C6 mos common), 1% 2014 C T T T T T T T T T T T T T T T T T T	

SCREENING TOOLS

Incidence of traumatic carotid and vertebral artery dissections: results of cervical vessel computed tomography angiogram as a mandatory scan component in severely injured patients

Purpose: The aim of this study was to evaluate the true incidence of cervical artery dissections (CeADs) in trauma patients will an Injury Seventy Score (ISS) of \$16, since head-and-neck computed tomography anglogram (CTA) is not a compulsory component of whole-body trauma computed tomography (CT) protocols.


Patients and methods: A total of 230 consecutive trauma patients with an ISS of 216 admitted to our Level I trauma center during a 24 month period were prospectively included. Standardized whole body CT in a 256 detector row scanner included a head and neck CTA. Incidence, mortality, patient and trauma characteristics, and concomitant injuries were recorded and analyzed retrospectively in patients with carotid arrory dissection (CAD) and vertebral artery dissection (VAD).

Results: Of the 230 patients included, 6.5% had a CCAD, 5.2% had a CAD, and 1.7% had a VAD. On patient had both CAD and VAD. For both, CAD and VAD, mortality is 25%. One death was caused by latal cerebral ischemia due to high-grade CAD. A total of 41.6% of the patients with traumatic CAD and 25% of the patients with VAD had neurological seguplas.

Conclusion: Mandatory head and neck CTA yields higher CeAD incidence than reported before. We highly recommend the computery inclusion of a liead and neck CTA to whole body CT routines for

Schicho A. et. al (2018). Incidence of traumatic carotid and vertebral artery dissections. Results of cervical vessel computed tomography angiogram as a mandatory scan component in severely Injured patients. Therapeutics and Clinical Risk Management, 14, 173—178

38

Denver Screening Criteria

Screening criteria

 The screening protocol criteria for BCVI are divided into signs and symptoms of BCVI and risk factors:

Signs and symptoms

- · arterial hemorrhage
- cervical bruit in patient <50 years of age
- expanding cervical hematoma
- focal neurologic deficit
- neurologic exam incongruous with head CT scan findings
- Stroke on secondary CT scan

Risk factors include high-energy transfer mechanism with

- Le Fort fracture: type 2 or 3
- base of skull fractures involving the carotid canal
- diffuse axonal injury with a GCS <6
- · cervical spine fractures that involve C1-3, and/or the transverse foramen
- cervical spine subluxation

40

Modified Denver Criteria

- · Basilar skull fractures with carotid canal involvement
- · C-spine fx through transverse foramina
- · C- spine fractures involving C1-3
- · Expanding neck hematoma
- · Cervical bruit in patients<50 years of age
- · Focal neurological deficits
- Evidence of brain infarct on CT
- DAI with GCS<6 or less
- Presence of Lefort II or III fx
- Near hanging injuries with anoxic brain injury
- Neurological examination inconsistent with head CT
 - Arterial hemorrhage

Other Screening Tooks

- Modified Memphis
- · Combined Denver & Memphis
- · Boston Screening tool

42

DIAGNOSIS MADE BY IMAGING

43

Eur J Trauma Emerg Surgi 2021 Feb :7(1):161-170 doi:10.10077/00068-019-01171-9 pab 2019 lun 13

Blunt cerebrovascular injury: incidence and longterm follow-up

Dennis Hundersmarck ¹⁻², Willem-Bart M Slooff ³, Jelle F Homans ⁴, Quirine M J van der Vliet ¹ Nizar Moayeri ⁵, Falco Hietbrink ¹, Gert J de Borst ², Fetullah Cumhur Oner ⁴, Sander P J Muijs-Luke P H Leenen ¹

- 71 BVI patients identified among the 12.122 (0.59%) blunt trauma patients
- Ischemic stroke as a result of BCVI was found in 20 patients (28%). In-hospital stroke rate was lower in patients receiving antiplatelet therapy (p < 0.01).
- Improved CTA diagnostic modalities have increased BCVI incidence. Furthermore, BCVI patients reported significant functional impairment at long-term follow-up. Antiplatelet therapy showed a significant effect on in-hospital stroke rate reduction.

45

Doppler Ultrasound- Carotid

- DUS lowest cost and highest safety profile of all the imaging
- Sensitivities as high as 96% in dx carotid artery dissections in stroke
- Abnormal blood flow pattern seen in up to 90% of patients with carotid artery dissection
- Most common DUS finding in carotid artery dissection is high resistance flow pattern or absence of signal in a totally occluded artery.
- DUS has a relatively high false-negative rate in patients with carotid artery dissection presenting with Horner syndrome
- Abnormalities with DUS should always be followed up with another imaging modality

Importance of Dx BCVI

It can lead to severe neurological deficits and even death related to a major stroke

The hallmark of injury to the internal carotid artery is a change in the caliber of the vessel

CTA is nearly always sufficient to confirm the diagnosis of carotid artery dissection

Even early studies (1996) with CTA achieved 100% sensitivity and specificity with arterial angiography

44

MRI/MRA Carotid Dissection

- MRI scans with fat saturation can show intramural blood, and mural expansion, pathological hallmark of dissection
- MRA may fail to detect intramural hematoma within the 1st 24-48 hours after occurrence of CAD
- Other MRA signs of dissection include
 - irregular vessel margins
 - filling defects
 - extravasation of contrast
 - vascular occlusion
 - caliber changes of the vessel

46

<u>[an New Works] 2</u>018 Jan 26 doi: 10.1007/s00062-018-0666-4 [Epuc attend of prin

Imaging of Spontaneous and Traumatic Cervical Artery Dissection : Comparison of Typical CT Angiographic Features.

Sports PB1 Needersladt T² Heundel W² Rasclike MJ² Hartensijet R³ (Minch R⁴ Hanning L^{2,4}

Author Information

Abstrac

NTRODUCTION: Cancical latery dissection (CAD) is an important electory of ischemic strike and early recognition is vital to protect patients on the major complication of cerebral embilication by administration of anticogulants. The elitology of arterial dissections officer and can be either apmiliaments or townsize. Even though the historical gold standard is still catheter angicgraphy, recent studies suggest a good genformance of computed tomography angiography (CTA) for detection of CAD. We conducted this research to evaluate the variety and frequency of possible inegings signs of apminiances and research conducted this research to evaluate the variety and frequency of possible inegings signs of apminiances and research conducted this research to evaluate the variety and frequency of possible inegings signs of apminiances and research conducted this research to evaluate the variety and frequency of possible inegings signs of apminiances and research conducted this research to evaluate the variety of the possible of the variety of the processing of the variety of the v

METHODS: Ratrospective review of the database of our multiple injured patients admitted to the Department of Trauma. Hand, and Reconstructive Surgery of the University Hospital Munster in Germany (a level 1 trauma center) for patients with traumatic CAD (ICAD) and of pur stroke database (2008-2015) for patients with spontaneous CAD (cCAD) and CT/CTA on Initial clinical work-up. All Images were evaluated cancerning specific and service and ological features for dissection by two experienced neuroradiologists. Imaging features were compared between the two elidosplets.

RESULTS: This study included 145 patients (99 male, 46 female, 45 ± 18 8 years of age) consisting of 126 dissected arteries with a traumatic and 43 with spontaneous elology intimal flags were more frequently observed after traumatic etiology (58 1% ICADs, 6 9% SCADs, p < 10 01), additionally, multiwasted disconsions were much more frequent in traumar patients (3 sCADs, 21 ICADs) and only less than half (42%) of the patients with traumatic dissocions showed cervical spine fractures

CONCLUSION: Neurocadiologists should be aware that infinial flaps and multiversel Consolians are more common effer a Naumilic establing, in addition, it seems important to conduct a CTA in a Irauma selling, even if no cervical spine fracture is detected.

ornarono, 2017 Nov.27(6),607-612, doi: 10.1111/jon.12451. Epub.2017 Jun.2

CT versus MR Techniques in the Detection of Cervical Artery Dissection.

lanning U14 Sports PB2 Schimiedel M2 Ringelston EB2 Heindel M2 Wend H2 Nicderstadt T2 Dillnich R3 Author information

HACKGROUND: Spontaneous cervical artery dissection (sCAD) is an important etiology of juvenile stroke. The gold standard for the flagnosis of sCAD is convential angiography. However, magnetic resonance imaging (MRIJMR angiography (MRA) and computed tomography (CT)ICT angiography (CTA) are frequently used afternatives. New developments such as multistice CTICTA have enabled icquisition of thinner sections with rapid imaging times. The goal of this study was to compare the capability of recent developed 128-slice CT/CTA to MRMMRA to detect radiologic features of sCAD.

METHODS: Retrospective review of palients with suspected sCAD (n = 188) in a database of our Stroke center (2008-2014), who underwent CTICTA and MRUfARA on initial clinical work-up. A control group of 26 patients was added All Images were evaluated concerning specific and sensitive radiological features for dissection by two experienced neuroradiologists. Imaging features were compared between the two

RESULTS: Forty patients with 43 dissected arteries received both modalities (29 Internal carotid arteries [ICAs] and 14 vertebral arteries pic 2011. 12 romy paiemes win 4-3 dissocited naments received bolin modalities (22 micranic Larowa annihe 3) Linkaj alino i 4 veteretrali anter 1/48). Ali ACAD servi cinedificiali front Cort And Midfilliali Affine features infantificiali fission standi and tumen irregulatival appeared in british Inodalities One high-grade stenosis was identified by CTiCTA that was expected occluded on MRIVIRA. Two MRIVIRA—confirmed eudoaneurysms were missed by CT/CTA. None of the controls evidenced specific Imaging signs for dissection

CONCLUSIONS: CT/CTA is a reliable and botter available alternative to MRINTRA for disposals of sCAD. CT/CTA so omplement MRI/MRA in cases where MRIM/RA suggests ecclusion.

49

Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial Lancet Neurol 2015; 14: 361-67

SUMMAY

Background Estractanial carotid and vertebral artery dissection is an important cause of stroke, especially in your people. In some observational studies it has been associated with a high risk of recurrent stroke. Both antiplated drugs and antistoogulant drugs are used to reduce risk of stock but whether one treatment strategy is more either than the other is unknown. We compared their efficacy in the Cervical Artery Dissection in Stroke Study (CADISS with the additional aim of establishing the true risk of recurrent stroke.

Methods We did this randomised trial at hospitals with specialised stroke or neurology services (39 in the UK an seven in Australia). We included patients with extracratial carotid and vericbral dissection with onset of symptom within the past 7 days. Fairents were randomly assigned (1:1) by an automated telephone randomisation service receive ampliadeled drugs or amicoagulant drugs (specific treatment decided by the local Clinician) for 3 month Patients and clinicians were not masked to allocation, but investigators assessing endpoints were. The primar emploint was ingulateral stroke or death in the internion-to-treat population. The trial was registered with EUDrat (2006-002827-18) and ISRN (CTN-44555237).

Findings We emolled 250 participants (115 carolid, 132 vertebral), Mean time to randomisation was 3.65 das (SD 1-91). The major presenting symptoms were stroke or transient isolatemic attack (n-224) and load symptom (headache, neck pain, or Horner's syndrome; n-26). The participants seer assigned to antiplateled treatment serial 224 to anticopation treatment. Overall, front (258) of 256 patients had strike recurrence (241 polluteral). Stroke of death occurred in three (258) of 256 patients versus one (196) of 124 (odds ratio (OR) or 335, 95% CI 0-006-4-23) pe-0-63). There were no deaths, but one major bleeding (subtractional handomistage) in the anticognital range Central review of imaging failed to confirm dissection in \$2 patients. Preplained per-protocol analysis excludin these patients showed stroke or death in three (258) of 101 patients in the antiplatede; group versus one (196) of 26 patients in the anticognitant group (OR 0-346, 95% CI 0-006-4-390; p-0-66).

repretation We found no difference in efficacy of antiplatelet and anticogulant drugs at presenting stabling patients with symptomatic carolid and semboral artery dissoction but stroke was rare in both group to rarer than reported in some observational studies. Dispossis of dissoction was not confirmed after cases, suggesting that radiographic criteria are not always correctly applied in routine clinical practice.

51

Society for Vascular Surgery Guidelines

- · CEA as the first-line treatment for symptomatic low-risk surgical patients with stenosis of 50% to 99% and asymptomatic patients with stenosis of 70% to 99%
- The perioperative risk of stroke and death in asymptomatic patients must be 50% stenosis and should be performed as soon as the patient is neurologically stable after 48 hours but definitely, <14 days after symptom onset
- clinically asymptomatic carotid artery stenosis in patients without cerebrovascular symptoms or significant risk factors for carotid artery disease is not recommended

50

Biomarkers and Antithrombotic Treatment in Cervical Artery Dissection (TREAT-CAD) trial

- · Designed before the results of CADISS published
- . 194 in TREAT-CAD trial randomly assigned (within 2 wks of symptomatic MRI-verified CAD) to 90-day aspirin 300 mg daily (n=100) or vitamin K antagonists (n=94), to test the non-inferiority of aspirin rather than the superiority of either treatment
- Why the difference in this trial vs CADISS
- The benefit of dual antiplatelet therapy appears particularly robust in individuals with large vessel disease, which might share some common pathophysiological features with arterial dissection, including intimal disruption.

52

Injury 2018 (an-49(1) 57 14 doi: 10.1016/j.i.g.iry 2017/07/036 Epub 2017 to 31

Management of blunt cerebrovascular injury (BCVI) in the multisystem injury patient with contraindications to immediate anti-thrombotic therapy

Michelle K McNutt 1 A Cozette Kale 2 Ryan S Kitagawá 3 Ali H Turkmani 4 David W Fields 5 Sarah Baraniuk ⁶ Brijesh S Gill ⁷ Biyan A Cotton ³ Laura J Moore ⁹, Charles E Wade ¹⁰ Arthur Day ¹¹ John B Holcomb ¹²

- Total of 28,305 blunt trauma 323 (1.1%) had 481 BCEVIs
- Isolated BCVI was reported in 111 (34.4%) & 212 (65.6%) patients had accompanying multisystem injuries (TBI, solid organ, or spinal cord injury) that contraindicated immediate antithrombotic therapy
- Lack of bleeding complications and equivalent stroke rates between groups suggests that the presence of TBI, solid organ injury, and spinal cord injury are not contraindications to antithrombotic therapy for stroke prevention in patients with BCVI

Early antithrombotic therapy is safe and effective in patients with blunt cerebrovascular injury and solid organ injury or traumatic brain injury

Shahan, Charles P. MO; Magnotti, Louis J. MD; McBeth, Paul B. MD, Weinberg, Jordan A. MD; Crock, Martin A. MD. Fabian, Timothy C. MD

Author Information (2)

Journal of Trauma and Acute Care Surgery July 2016 - Volume 81 - Issue 1 - p 173-177 doi: 10.1097/TA.000000000000001058

- 119 patients (74 with TBI, 26 with SOI, and 19 with both) were identified
- 71% were treated with heparin infusion & 29% received antiplatelet therapy alone
- Initiation of early AT for patients with BCVI and concomitant TBI or SOI does not increase risk of worsening TBI or SOI above baseline

55

Observational Study > J Trauma Acute Care Surg (2027) Feb (19242 - 17) 754 doi: 10.1047/14.60000000000003455

Factors associated with stroke formation in blunt cerebrovascular injury: An EAST multicenter study

Emily C Esposito 1 Joseph A Kufera Timothy W Wolff, M Chance Spalding Joshua Simpson Julie A Dunn, Linda Zier, Signid Burruss, Paul Kim, Lewis E Jacobson, Jamie Williams, Jeffry Nahm Areg Grigorian, Laura Harmon, Anna Gergen, Matthew Chatoor, Rish: Rattan, Andrew J Young Jose L Pascual Jason Murry Adrian W Ong Alison Muller Rovinder S Sandhu Rachel Appelbaum Nikolay Bugaev, Antony Tata: Khaled Zieik, Leah Hustad, Mark J Liesei, Deborah M Stein Thomas M Scalea Margaret H Lauerman

- 777 BCVIs included
- Stroke rate 8.9% for all BCVIs, with 11.7% rate of stroke for ICA BCVI and 6.7% rate for VA BCV
- Protocol-driven management by the trauma service, antiplatelet therapy (specifically Aspirin), and lower % luminal stenosis were associated with lower stroke rates
- Resolution & development of intraluminal thrombus were associated with higher stroke rates

57

Treatment of Carotid Dissections

- Asymptomatic with low-grade dissections typically tx conservatively with medical management & close imaging observation
- According to the guidelines, antithrombotic or antiplatelet treatment is recommended in patients with neurological symptoms (Class IIa, Level B recommendation)
 - Anticoagulants or antiplatelets are usually recommended in the acute phase of CAD to prevent primary or recurrent ischemic events
- Endovascular intervention is suggested only when neurological status of a patient deteriorates under conservative medical treatment

World Neurosurg, 2020 Jan 133 e035 e390 doi:10.1016/j.wneu-2019.09.013 Ebab 2019 Sep. 12.

Management of Extracranial Blunt Cerebrovascular Injuries: Experience with an Aspirin-Based Approach

Joshua S Catapano 1. Sharjeel Israr 1. Alexander C Whiting 1. Omar M Hussain 1. Laura A Snyder Felipe C Albuquerque 1. Andrew F Ducruet 1. Peter Nakaji 1. Michael T Lawton 1. ordan A Weinberg 1 Joseph M Zabramski 3

- 13,578 patients admitted following blunt trauma
- 94 (0.7%) with confirmed BCVI (mean age, 42 yrs; 72% male). Mean Injury Severity Score and Glasgow Coma Score were 27 and 10, respectively
- . BCVI was identified in 130 vessels
- · An ASA-based management strategy for BCVI was efficacious and relatively safe in this study. This approach may be the preferred treatment for BCVI, but confirmation is needed.

56

ESO guideline for the management of extracranial and intracranial artery dissection

12/mpub com/journals-permissions. DOI: 10 1177/21969873211046475

Stephanie Debette^{1,2}°, Mikael Mazighi^{2,6,5,6,7}, Philippe Bijlenga⁸, Alessandro Pezzini⁷, Masatoshi Koga¹⁰, Anna Bersano¹¹, Janika Körv^{12,13}°, Julien Haemmerli⁸, Isabella Canavero¹¹, Piotr Tekiela¹⁴, Kaori Miwa¹⁰, David J Seiffge¹⁵, Sabrina Schilling¹⁶, Avtar Lal¹⁴, Marcel Arnold¹⁵, Hugh S Markus¹⁷, Stefan T Engelter^{16,19} and Jennifer J Majersik¹⁴

Abstract
The aim of the present European Stroke Organisation guideline is to provide clinically useful evidence-based recommendations on the management of extracranial artery dissection (EAD) and incracranial artery dissection (IAD). EAD and IAD represent leading causes of stroke in the young, but are uncommon in the general population, thus making it challenging to conduct clinical trisk and large observational studies. The guidelines were prepared following the Standard Operational Procedure for European Stroke Organisation guidelines and according to GRADE methodology. Our four recommendations result from a thorough analysis of the literature comprising two randomized controlled trials (RCTs) comparing analysis and procedure for extractive observational studies. In EAD patients with acute isthemic stroke, we recommend using intravenous thrombolysis (IVT) with alteblase within 45 hours of onset if standard inclusions/exclusion criteria are met. and mechanical thrombectoriny in patients that large vessel occlusion of the anterior circulation. We further recommend early endovascular or surgical intervention for AD patients with subarachinoid hieronianes (EAH). Based on evidence from two place 2 RCTs that have shown in addifference between the benefits and roas of anticogulants verus analptateles in the acute phase of symptomatic EAD, we strongly recommend that clinicisms can prescribe either option. In post-acute EAD guiters with resolutions of

58

Denver Radiologic Grading Scale for BCVI & Tx

- **Grade I**: Irregularity of the vessel wall or dissection/intramural hematoma with less than 25% stenosis
 - Management: Anticoagulation or antiplatelet therapy, endovascular repair for symptomatic patients who are not candidates for anticoagulation or antiplatelet therapy
- Grade II: Intramural thrombus or raised intimal flap or dissection/intramural hematoma with greater than 25%
 - Management: endovascular therapy if symptomatic, anticoagulation, antiplatelet therapy, deferred endovascular repair in high-risk asymptomatic patients
- Grade III: Pseudoaneurysm
 - Management: endovascular therapy if symptomatic, anticoagulation, antiplatelet therapy, deferred endovascular repair in high-risk asymptomatic patients
- Grade IV: Vessel Occlusion
 - Management: endovascular therapy if symptomatic, anticoagulation, anti therapy, deferred endovascular repair in high-risk asymptomatic patients
- Grade V: Vessel transection
 - Management: Vascular sacrifice, either open or endovascular if symptomatic followed by anticoagulation or antipitatels therapy. Asymptomatic patients managed with observation, operative or endovascular treatment for ongoing hemorrhage.

 Sett Will, Moore E., Other PI et al. (1999) Minist careful arisins: implications of

Bull WL, Moore EE, Officer FI et -0. (1999) Blant careful arterial injuries: implications of a new grading scale. J Trauma., 47 (5): 845-53

ENDOVASCULAR TREATMENT

61

Surgical & Endovascular Repair

- · Data limited on surgical therapy limited
- AHA/ASA recommends that angioplasty and stenting be considered when ischemic neurologic symptoms have not responded to medical therapy
 - only for ICAD and not VAD!
- · Candidates for procedural therapy include:
 - those with recurrent ischemia despite medical treatment
 - patients with contraindications to anticoagulants or antiplatelet medications
 - patients with significantly compromised cerebral blood flow or with severe occlusion
 - luminal narrowing, and those with enlarging pseudoaneurysms

63

Endovascular Tx of ICA Dissections

- High rates of favorable outcome and reperfusion noted, BUT most of the studies retrospective case reports or case series with a high sensitivity to bias and low number of cases
- Data in the included studies was not always consistently described
- Time to treatment in the reviewed studies was relatively long, which could be due to procedural time needed to stent the ICA increases the onset-to reperfusion time
- Studies that describe results of 2nd generation (Solitaire & Penumbra) treatment methods are not widely available yet

Hoving J.W., Marquering H.A. and Majole C.B. (2017). Endovascular treatment in patients with carotid artery dissection and intratrantal occlusion: A systematic review. NeuronoBology, 59, 541–647

Observational Study 2 Am Surg 2022 mag mile 1962 1964 the 1031177/00311 6122 647895

Endovascular Intervention in Internal Carotid Artery Blunt Cerebrovascular Injury: An EAST Multicenter Study

Margaret Lauerman — Emily Esposite — Chance Spalding — Joshua Simpson — Julie A Dunn — Linda Zier — Signid Burusa — Paul Kim — Lewis I. Jacobson — Jame Williams — Jedfry Nahmas — Areg Grigoriam — Laura Haimen — Anna Girgen — Marthew Chaton — Richi Rattan — Andrew J Young — Jose L Passual — Jason Murry — Adrian W Ong — Alison Müller — Rovinder S Sandhu — Rachel Appelbaum — Nikolay Bugaev — Antony Tatai — Khaleet Zieik — Mark J Lieser — Thomas M Scalea — Doborah M Stein —

- Use of endovascular intervention (EI) for blunt cerebrovascular injury (BCVI) is without consensus guidelines Rates of EI use and radiographic characteristics of BCVI undergoing EI nationally are unknown
- 332 ICA BCVI included, 21 (6.3%) underwent El
- seudoaneurysm size is associated with use of EI for ICA BCVI. Stroke is more common in ICA BCVI with EI but did not occur after EI use

62

Endovascular Management of Cervical Carotid and Vertebral Artery Dissection: Indications, Techniques, and Outcomes From a 20-Year Experience

- 116 patients, including 93 in the CAD cohort and 23 in the VAD cohort, with a mean age of 44.9 years (range 5-76)
- In a long-term experience, endovascular management of CAD and VAD is highly effective in specific indications, with an acceptable complication profile. CAD requiring intervention is more likely than VAD to have failed medical therapy, present with thromboembolic events and pseudoaneurysms, and undergo primary stent placement, whereas VAD is more likely to undergo treatment for traumatic occlusions with recanalization

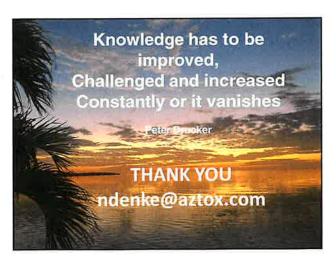
Moon K., Albuquerque F., Cole T.S., et al. (2016). Endovascular management of cervical carolid and vertebral artery dissection: indications, techniques, and outcomes from a 20-year experience. Neurosurgery, 63, 205

64

References

- AbuRahmaet, et al. (2022). Society for Vascular Surgery clinical care guidelines for management of extracranial cerebrovascular disease. Journal of Vascular Surgery, 75(1S), 4S–22S. https://doi.org/10.1016/j.jcs.2021.04.073
- Albuquerque FC, Hu YC, Dashti SR, Abla AA, Clark JC, Alkire B, Theodore N, McDougall CG. (2011). Craniocervical arterial dissections as sequelae of chiropractic manipulation: Patterns of injury and management. Journal of Neurosurgery, 115 (6), 197-2005.
- Beckman J, Ansel G, Lyden S, et al. (2020). Carolid artery stenting in asymptomatic carolid artery stenosis. J Am Coll Cardiology, 75 (6) 648–656 https://doi.org/10.1016/j.acc.2019.11.054
- Brott T.G., Halerin J.L., Abbara S., et al. (2011). 2011 ASA/ACCF/AHA/AANN/AANS/ACF/ ASNR/CNS/3PI/SCAI/SIP/SNIS/SVMSVS guideline on the management of patientswith extracranial carroid and vertebral artery disease. Circulation, 124, e54–130.
- Catapano J.S., Israr S., Whiting A.C., Hussain O.M., Snyder L.A, Albuquerque F.C., Ducruet A.F, Nakaji P., Lawton M.T., Weinberg J.A. & Zabramski J.M. (2020). Management of extracranial blunt cerebrovascular injuries: Experience with an aspirin-based approach. World Neurosurgery, 133, e385-e390. https://doi.org/10.1016/j.wneu.2019.09.013.
- Engelter ST, Traenka C, Gensicke H, et al. (2021). Aspirin versus anticoagulation in cervical artery dissection (TREAT-CAD): Appen-label, randomised, non-inferiority trial. Lancet Neurology: https://doi.org/10.1016/S1474-4422(21)00044-2
- Engelter ST, Traenka C, Grond-Ginsbach C, Brandt T, Hakimi M, Worrall BB, Debette S, Pezzini A, Leys D, Tallisumak T, Nolle CH, Lyrer P (2021). Cervical artery dissection and sports. Fronlier Neurology, 12, 663830. doi: 10.3369/fneur.2021.663830.

References


- Galylos G., Filis K., Sigala F. and Sianou A. (2016). Traumatic carolid artery dissection: A different entity without specific guidelines. Vascular Specialist International, 32(1), 1-5
- Hoving J.W., Marquering H.A. and Majoie C.B. (2017). Endovascular treatment in patients with carotid artery dissection and intracranial occlusion: A systematic review. *Neuroradiology*, 59,
- Hundersmarck D, Stooff W.M, Homans J.F, van der Vliet Q.M.J, Moayeri N, Hietbrink F, de Borst G.J. Öner F.C, Muijs S.P.J. Leenen L.P.H (2021). Blunt cerebrovascular injury. Incidence and long-term follow-up. European Journal of Trauma & Emergency Surgery, 47(1):161-170. doi: 10.1007/s00068-019-01171-9
- Johnston SC, Amarenco P, Denison H, et al. (2020). Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. New England Journal of Medicine, 383, 207–17
- acute ischemic stroke of 11A, New England Journal of Medicine, 269, 207-117
 Kells, G., Maturo, S., Couch, M. E., & Schmalbach, C. E. (2017). Blint cerebrovisscular injury following craniomaxifiolacial fractures: A systematic review. The Laryngoscope, 127(1), 79-86. https://doi.org/10.1002/stry.25186
 Kufera, J. A., Wolff, T. W., M., Rattan, R., Young, A. J., Pascual, J. L., Murry, J. ... Lauerman, M. H. (2022). Factors associated with stroke formation in blunt cerbrovascular injury. An EAST multicenter study. The journal of trauma and acute care surgery, 92(2), 347-354. https://digen. A., oi.org/10.1097/TA.00000000000003455
- A , 0.org/10.109/1A.0000000003955
 Li Q, Wang J, Chen H, Gong X, Ma N, Gao K., He L, Guan M., Chen Z., Li R., Mi D., Yuan C.,
 Zhao X, and Zhao X.H. (2015). Characterization of craniocervical artery dissection by
 simultaneous MR noncontrast angiography and intraplaque hemorrhage imaging at 3T.
 American Journal of Neuroradiology, 36, 1769 –75
- Lian, Y.H., Chen, X., Kong, D.R. et al. Cervical artery dissection—an easily neglected cause of stroke: a case report. BIMC Neurol 20, 428 (2020). https://doi.org/10.1186/s12883-020-02006-6

67

References

- Rutman A.M., Vranic J.E. & Mossa-Basha, (2017). (2018). Imaging and
- management of blunt cerebrovascular injury. *RadioGraphics*, 38(2), 542-563. Schlemm L, Nolte CH, Engelter ST, Endres M, Ebinger M. (2017). Cervical artery dissection after sports - an analytical evaluation of 190 published cases. Eur Stroke Journal, 2, 335–45. 10.1177/2396987317720544
- Schicho A. Luerken L., Meire R., Ernstberger A., Stroszczynski C., Schreyer A., Dendl L.M, and Schleder S. (2018). Incidence of traumatic carotid and vertebral artery dissections: Results of cervical vessel computed tomography angiogram as a mandatory scan component in severely injured patients. Therapeutics and Clinical Risk Management, 14, 173—178
- Shafafy R., Suresh S., Afolayan J.O., Vaccaro A.R., and Panchmatia J.R., (2017). Blunt vertebral vascular injury in trauma patients: ATLS recommendations and review of current evidence. Journal of Spine Surgery, 3(2), 217-225
- Shahan, Charles P. MD; Magnotti, Louis J. MD; McBeth, Paul B. MD; Weinberg, Jordan A. MD; Croce, Martin A. MD; Fabian, Timothy C. MD. Early antithrombotic therapy is safe and effective in patients with blunt cerebrovascular injury and solid organ injury or traumatic brain injury. Journal of Trauma and Acute Care Surgery: July 2016 - Volume 81 - Issue 1 - p 173-177 doi: 10,1097/TA.000000000001058

69

References

- Malas, M. B., Murad, M. H., Perler, B. A., Powell, R. J., Rockman, C. B., & Zhou, W. (2022). Society for Vascular Surgery clinical practice guidelines for management of extracranial cerebrovascular disease. Injury, 49(1), 67-74 https://doi.org/10.1016/j.injury.2017.07.036
- Markus HS, Hayter E, Levi C, Feldman A, Venables G, Norris J. (2015). Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): A randomised trial, Lancet Neurology,14, 361–67
- McNutt, M. K., Kale, A. C., Kltagawa, R. S., Turkmani, A. H., Fields, D. W., Baraniuk, S., Gill, B. S., Cotton, B. A., Moore, L. J., Wade, C. E., Day, A., & Holcomb, J. B. (2018). Management of blunt cerebrovascular injury (BCVI) in the multisystem injury patient with contraindications to immediate anti-thrombotic therapy. Injury, 49(1), 67–74. https://doi.org/10.1016/j.injury.2017.07.036
- Moon K., Albuquerque F., Cole T.S., et al. (2016), Endovascular management of cervical carotid and vertebral artery dissection: indications, techniques, and outcomes from a 20-year experience. Neurosurgery, 63, 205.
- Morton R.P., Hanak B.W., Levitt M.R., Fink K.R., Peterson E.C., Vilela, M.D., Kim L.J., and Chesnut R.M. (2014). Blunt traumatic occlusion of the internal carotid and vertebral arteries. *Journal of Neurosurgery*, 120, 1446–1450
- Robertson J.J. and Koyfman A. (2017). Extracranial cervical artery dissections. Emergency Medicine Clinics of North America, 35(4), 727-741

68

Refernces

- Tintinalli, J., Slapczynski, J. Stephan, editor, Ma, O., John, editor, Yealy, Donald M., editor, Meckler, Garth D., editor, & Cline, David, editor, (2018), *Tintinalli's emergency medicine: A comprehensive study guide* (9th ed.).
- VonBabo M, De Marchis G.M., Sarikaya H., et al. (2013), Differences and similarities between spontaneous dissections of the internal carotid artery and the vertebral artery. Stroke, 44, 1537-42